JView, An Information Visualization Paradigm

Air Force Research Laboratory, Rome Research Site, Rome NY 13441

ABSTRACT

The framework for JView, a Java based runtime re-configurable simulation visualizer, was described in two previous publications1. Many augmentations and substitutions have taken place in the JView API, brought about by working closely with customers from various agencies as well using the API on internal projects. However, the core mantra that JView is based upon has made it through these alterations unscathed and with more concrete proof of its utility. JView demystifies the world of 3D graphics programming, allowing users to concentrate solely on the task of visualization instead of concentrating their efforts on the art of complicated 3D graphics. It is a cross platform technology that is engineered to save time, money, and effort while meeting a variety of visualization needs. Its Java implementation, which provides cross-platform functionality while utilizing the OpenGL API, allows for platform dependent hardware acceleration. This paper contains concepts that the JView architecture utilizes as well as a brief introduction to its new 2D engine concepts.

Keywords: Java, Visualization, 3D, 2D

1. Introduction

JView is an Application Programming Interface (API) designed to demystify the complicated world of computer graphics, simplify and promote the reuse of objects, and be platform independent. The motivation behind JView is to allow programmers to produce more robust and flexible applications; thus more completely and quickly addressing user needs. This is one of many “holy grails” of fourth generation languages. While the current instantiation of JView is not tackling all of the difficulties of such general languages, it is proving that, for graphics applications, a simple approach with embedded extensibility is possible. The research being performed at the Air Force Research Laboratory’s Information Directorate is pushing the ideas of software design, runtime re-configurability, and graphics and graphical interaction to new levels. This research is directly supporting the creation of applications based upon these ideas, implemented through JView, for a range of initially Department of Defense customers. It is important to note that the core concepts implemented in JView to support graphical applications can also be used to address a wide variety of other venues.

2. Problem Statement

JView’s purpose is to provide the programmer with a set of tools, rules, and constructs to create more tools, write better demonstrations, perform concept exploration, and create more robust applications that require 3D or 2D visualization. There are a number of key services and tools that are needed to provide the flexibility described. These include a 3D engine, a 2D engine, a runtime engine, tools to interact with industry standard files, components that support navigation, examples, and documentation.

3. Mantra

The idea of doctrine for programming is a difficult pill to swallow. However, JView attempts to channel a programmer’s time towards writing new objects that perform new duties while relying upon previously written code. Programmers often find it easier to “write it myself” than to figure out what some other algorithm is doing. By making the support tools small and easy to create, we hope that implementers find it easier to reuse than rewrite. The reuse of the components has proven to be very successful in developing demonstrations, tutorials, and full applications. JView’s event driven API allows any component to listen for any action that can be performed in the core classes. This allows users to create small modules that interact closely with the environment without necessarily understanding what role the participants are playing. An example of one such tool is the universe inspector, which displays all the entities that are in the scene. By registering itself as a universe listener, the universe inspector merely responds to events that tell when elements are added and removed. Similar events exist for element movement, element geometry changes, the start of rendering, the end of rendering, et al. A complete list is available through the API documentation. It is also important and useful for the creator of software to decouple the user interface from the code performing the underlying computation. With loose coupling and a well-written interface specification that details the information that is available to push into and out of the module, a programmer can rework the interface without impacting the core functionality. This separation is essential for code to remain compact and efficient and also allows the code to interact with other unknown modules.

4. Jview ARCHItecture and services

JView provides a set of core services and objects that perform a set of tasks. These services include animation support, time management, class loading and unloading, interface pairing, etc. JView categorizes any class into one of three functional types: Oddments, Plug-ins, and Facilitators. Any given type should not try to perform the job of the other two types. If a programmer finds those lines blurring, a re-organization of the classes is in order.

4.1 Oddments
An Oddment is defined2 as “any of various miscellaneous items” or “a scrap or remnant.” This is what JView Oddments embody. They are bits of code that provide specific, low level functionality such as a model loader, simulation audit trail loader, interpolation algorithm, explosion representation, particle system, DTED loader, etc. These modules may not necessarily be JView specific but are provided in the JView API as useful components.

4.2 Facilitators

Facilitators encapsulate the mechanism to draw information to a JView universe. When written correctly, a facilitator should perform a rather small function. Their power is in numbers, not complexity. The original implementation of facilitators dictated that they must provide a graphical interface for the user. This proved useful at times but application programmers wanted to replace the facilitator’s GUI with one of their own. De-coupling the two was made evident by looking at the future benefits that it will provide. The writer of the facilitator no longer creates the interface; instead the programmer provides a Java interface class specifying the interactions that can be performed. This often includes both pushing of data to the facilitator as well as getting data from the facilitator. There are currently two types of facilitators’, time constrained (TCFacilitator) and time unconstrained (TUCFacilitator).

TUCFacilitators are independent of the JView-provided internal clock. An example of a TUCFacilitator is one that listens to the Distributed Interactive Simulation (DIS) protocol. There are external forces that dictate entity appearance, movement, and removal. Another example is an application for creating 3D environments where the user controlling the application directly causes the actions that occur.

An example of a TCFacilitator is a simulation audit trail player where the user can control the replay of the recorded data. There is a well-defined interface that TCFacilitators need to implement. This implementation supports the standard VCR type of controls. The programmer of a TCFacilitator therefore does not dictate the time step or replay of the data. The TCFacilitator simply responds to repeated step requests from a core service module, the TCManager.

A key feature of JView is that many of these Facilitators, either Time Constrained or Time Unconstrained, can exist simultaneously. This is very useful when supporting the visualization of multiple files. The programmer can simply instantiate many instances of one module instead of explicitly programming to provide for such activities.

4.3 Plug-ins

A Plug-in provides general functionality that can operate over a heterogeneous environment. For example, the ability to move around the scene is independent from the data, whether the source is a simulation audit trail, live data, or user-generated information. A simple example is a moving paradigm that listens to a Logitech Magellan. When the Magellan Plug-in receives data from the device to change the viewer’s location, it performs the appropriate command upon the camera in the scene. The Plug-in needs no knowledge over what elements are in the scene, why they are there, or the purpose of the overall application. Just like Facilitators, Plug-ins provide an interface class for programmers, decoupling its functionality from a GUI. Facilitators and Plug-ins are implemented identically in the core code and are segmented into two different types merely by their function.

5. Graphics Rendering

The JView API originally relied upon Sun Microsystems’s Java 3D implementation for all its rendering needs. It quickly became evident that extending it to perform unusual or unique rendering ideas was just not feasible. While Java3D allowed other JView concepts, such as Facilitators, Plug-ins, and Oddments, to mature rapidly, Java3D quickly became limited. The team purchased a lower level binding to OpenGL, called Magician. An entirely new graphics engine was born. The design is not based upon Java3D’s concepts, but upon the expertise of the programmers and knowledge of how the API is to be employed. The graphics engine was written above the low level Magician API. This new engine provides concepts similar to other implementations, including object container classes for triangle strips, triangle fans, quad strips, etc.

One main premise behind writing JView is extensibility. In large software projects, it is often difficult to grasp the entirety of a program or API’s capabilities. To alleviate at least some of the burden, an extremely simple core rendering engine was created. This engine relies upon a unique scene graph structure. The Graph3D object that performs the rendering to the screen has been boiled down to a simple broker. One of its duties is telling the objects that comprise the scene to draw themselves. This has many advantages over other methods, including being a more object-oriented representation. This separation of duties allows a programmer to create a new node type without concerning themselves with the implementation details of any other node. This creates a structure that can quickly grow and shrink with the programmer’s needs. If a new extension becomes available that only one card supports, the programmer simply extends the base node structure and can add code that represents that new detail and how to it is to be processed. Since purchasing Magician, it has been discontinued and the core rendering engine was re-coded to use JauSoft’s GL4Java package3. This package is freely available from their website.

6. Scene Graphs

Scene graphs are used commonly now in 3D API’s and applications as a way to represent the contents of the scene. A traditional scene graph will have parent and child nodes that continue down to terminating leaves, essentially making a Directed Acyclic Graph (DAG). The JView 3D engine is designed to be a layer above the low level 3D graphics library, alleviating the need to understand the base rendering system. When the JView project began, a gap in functionality was evident from the original scene graph concepts, the idea of a SceneElement. A SceneElement essentially encapsulates the geometry and user data of a single entity in the scene. Doing this provides a mechanism for performing intelligent introspection into the scene graph structure. The primitives that comprise a model in the scene are rarely simple enough to reside in a single node in either scene graph concept. In JView, there are two similar but separate scene graph implementations. The first lays out the participants in the scene and the second describes the geometry that comprises that element. Figure 1 shows a rudimentary example of a traditional scene graph representation of a complex object made up of a sphere and a box, next to another simple object that is a tetrahedron. Figure 2 shows that same example designed with JView. If an external piece of code attempted to traverse the tree of the traditional scene graph, it would not be able to specify the number of entities in the scene. It would only be able to specify the number of geometric objects that made up the scene. However, the JView scene graph can be traversed very easily and gather the necessary information, such as the number of entities and how many geometric objects are needed to display any particular entity. This separation is critical since JView relies upon small, cooperative modules of code that do not need to understand or know about the existence of other modules. JView’s scene graph structure allows for more intuitive interfaces that cannot be easily represented by other visualization engines, including a more fundamental improvement in graphics capabilities. A SceneElement can be extended to support not just the currently provided scene graph representation for geometry, but other types of geometry representation that may be better suited for different types of objects. For example, a generic stack-based SceneElement could be created to ingest the OpenGL commands directly. [image: image5.png]Another key advantage is the ability to create very specialized SceneElement geometries that talk directly to the OpenGL state machine without using the traditional generic data representations. This flexibility lends itself to testing new ideas, or in the case for the Tetrahedron, creating the smallest and fastest representation possible. There is no simpler way to represent a Tetrahedron than the one provided in the JView API, thus efficiently being able to use many of them in the scene simultaneously.

7. Example ApplicationS

For the National Air Intelligence Center (NAIC), AFRL/IF is creating a simulation audit trail visualization program called NAICView. This application utilizes the core services available through the JView API to provide the analyst with eyes into their simulation. NAICView allows the analyst to view single or multiple simulation runs simultaneously. This capability is supported by the facilitator concept and is accomplished by simply instantiating an AuditTrail facilitator for each file to be viewed. The NAICView application uses many oddments to enhance its visualization. Some include the use of the Grid oddment, Wavefront model loader and Fractal Terrain generator. The application also augments the visualization by using helper facilitators which know something about the internal data structures of the AuditTrail facilitator. One such augmenter is the Trail facilitator. It understands the internal representation of the AuditTrail’s entity and time lists to efficiently draw future and past trails for the elements in the scene. An interesting note is that the GUI is very loosely coupled and could be replaced without changing the code that creates the application functionality. Figures 3, 4, and 5 show snapshots from the application.

Figure 6 shows a snapshot of a 3D radar detection view provided from a JView enabled demonstration. At the Air Force Research Laboratory, live radar detections over New York State can be shown. This demonstrates that the same API that is being used to display time constrained simulation audit trails can also be used to display real-time information being fed from a fielded system.

8. WHEre is JView going?

Many customers have requested a 2D capability that closely resembles the 3D model that JView currently provides. Development has started and there already is a working prototype of this revolutionary 2D engine. One innovative feature of this engine is that it allows for lenses of information to be displayed. These lenses provide users the ability to view layers of information in user selected areas of the map. Figure 7 shows a view of the 2D engine supporting traditional mapping data such as Compressed Arc Data Raster Graphics, Vector Product data, Satellite imagery, and others. However, the lenses are a unique presentation medium through which new layers can be displayed, changed, or interacted upon. There are lenses that automatically update their contents when they move by knowing where they are in relationship to the substructure. There are others lenses that ignore frame location and display other types of information. The lenses could also have different zoom levels, providing the user a microscopic view into one particular area while still providing the macroscopic view. This does not necessarily imply that the user will have numerous windows that they need to control. An application specific rule set could have the intelligence to spawn and automatically zoom in based on certain user-defined criteria. Many other new concepts are also being explored and will be provided in subsequent releases.

JView’s future as a supported capability is evident through the funding of configuration management. JView’s research team is continually updating this capability to view data and information in new and interesting ways. Hopefully, the community will adopt JView and contribute to it by providing modules to the repository, reporting bugs, specifying enhancements, or providing money to sustain research and configuration control.

9. Conclusion

This paper provides a small view into JView’s concepts and implementation. This view is merely a subset of the possibilities and avenues that this research has investigated and will be doing. If JView interests you, please contact us through the configuration management website, whose link can be found from the generic JView website at http://www.rl.af.mil/tech/programs/JVIEW/jview_index.html. After your download application has been reviewed and accepted, you will be able to download the JView API with examples. All comments and questions are welcome.

[image: image1.png]

[image: image2.png]

 EMBED PSP6.Image [image: image3.png]
Figure 3, 4 and 5: The top figure shows the aircraft’s Missile Warning System (MWS) coming on line and searching for the missile. The lower left figure shows the aircraft launching countermeasures and performing evasive maneuvers. The lower right figure shows the simulated engagement at the same time as the lower left, but in reference to the missile and its seeker cone.

[image: image4.png]
Figure 6: A screenshot of the radar detections over New York State displayed over DTED draped with CADRG. As the detections get old, they fade away showing a type of historical trail. By clicking on a detection, information such as the transponder code and altitude are displayed to the screen. Simultaneously the entire radar packet information is displayed in the control panel to the right.

Figure 7: An example of some concepts that are directly supported by JView’s 2D engine.

References

1) “Advanced Displays for Modeling and Simulation,” Enabling Technology for Simulation Science III, Proceedings of SPIE. 3696. pp 213-219

 “A Re-Configurable Simulation Visualizer,” Enabling Technology for Simulation Science IV, Proceedings of SPIE. 4026. pp 50-58

2) Webster’s College Dictionary Third College Edition, Simon & Schuster Inc., New York, New York, 1988, pp. 939, 485

3) http://www.jausoft.com/products/gl4java/gl4java_main.html

Tetrahedron

Sphere

Box

SceneElement

SceneElement

Universe

Scene

Tetrahedron

Sphere

Box

Figure 1 A traditional scene graph

Figure 2 The JView scene graph

Shows a different underlay map while preserving the vector lines

Doesn’t show any layer other than the map.

The lower window redisplays the contents of the red shaded view.

This window shows a series of layers that are controllable by the slider bar on the right.

� EMBED PSP6.Image ���

* Correspondence: Email: JVIEW@rl.af.mil; Telephone: 315 330 4192; Fax: 315 330 7136

_1078895120.bin

_1078900656.bin

_1078904308.bin

_1078895220.bin

_1078895009.bin

